OneToOneFeatureMixin#

class sklearn.base.OneToOneFeatureMixin[原始碼]#

為簡單的轉換器提供 get_feature_names_out

此 mixin 假設輸入特徵和輸出特徵之間存在一對一的對應關係,例如 StandardScaler

範例

>>> import numpy as np
>>> from sklearn.base import OneToOneFeatureMixin, BaseEstimator
>>> class MyEstimator(OneToOneFeatureMixin, BaseEstimator):
...     def fit(self, X, y=None):
...         self.n_features_in_ = X.shape[1]
...         return self
>>> X = np.array([[1, 2], [3, 4]])
>>> MyEstimator().fit(X).get_feature_names_out()
array(['x0', 'x1'], dtype=object)
get_feature_names_out(input_features=None)[原始碼]#

獲取轉換的輸出特徵名稱。

參數:
input_featuresarray-like of str 或 None,預設為 None

輸入特徵。

  • 如果 input_featuresNone,則會使用 feature_names_in_ 作為輸入特徵名稱。如果 feature_names_in_ 未定義,則會產生以下輸入特徵名稱:["x0", "x1", ..., "x(n_features_in_ - 1)"]

  • 如果 input_features 為類陣列 (array-like),則若 feature_names_in_ 有定義,input_features 必須與 feature_names_in_ 相符。

回傳值:
feature_names_out字串物件的 ndarray

與輸入特徵相同。