OneToOneFeatureMixin#
- class sklearn.base.OneToOneFeatureMixin[原始碼]#
為簡單的轉換器提供
get_feature_names_out
。此 mixin 假設輸入特徵和輸出特徵之間存在一對一的對應關係,例如
StandardScaler
。範例
>>> import numpy as np >>> from sklearn.base import OneToOneFeatureMixin, BaseEstimator >>> class MyEstimator(OneToOneFeatureMixin, BaseEstimator): ... def fit(self, X, y=None): ... self.n_features_in_ = X.shape[1] ... return self >>> X = np.array([[1, 2], [3, 4]]) >>> MyEstimator().fit(X).get_feature_names_out() array(['x0', 'x1'], dtype=object)
- get_feature_names_out(input_features=None)[原始碼]#
獲取轉換的輸出特徵名稱。
- 參數:
- input_featuresarray-like of str 或 None,預設為 None
輸入特徵。
如果
input_features
為None
,則會使用feature_names_in_
作為輸入特徵名稱。如果feature_names_in_
未定義,則會產生以下輸入特徵名稱:["x0", "x1", ..., "x(n_features_in_ - 1)"]
。如果
input_features
為類陣列 (array-like),則若feature_names_in_
有定義,input_features
必須與feature_names_in_
相符。
- 回傳值:
- feature_names_out字串物件的 ndarray
與輸入特徵相同。