ndcg 分數#
- sklearn.metrics.ndcg_score(y_true, y_score, *, k=None, sample_weight=None, ignore_ties=False)[來源]#
計算正規化折扣累積增益。
將預測分數誘導的順序中排序的真實分數相加,並應用對數折扣。然後除以最佳分數 (完美排序的理想 DCG),得到介於 0 和 1 之間的分數。
如果
y_score
將真實標籤排名靠前,則此排名指標會傳回高值。- 參數:
- y_true類陣列,形狀為 (n_samples, n_labels)
多標籤分類的真實目標,或是要排序的實體之真實分數。
y_true
中的負值可能會導致輸出不在 0 到 1 之間。- y_score類陣列,形狀為 (n_samples, n_labels)
目標分數,可以是機率估計、信賴值,或是一些分類器上「decision_function」返回的未經閾值處理的決策度量。
- k整數,預設為 None
僅考慮排名中最高的 k 個分數。如果為
None
,則使用所有輸出。- sample_weight類陣列,形狀為 (n_samples,),預設為 None
樣本權重。如果為
None
,則所有樣本將被給予相同的權重。- ignore_ties布林值,預設為 False
假設 y_score 中沒有並列的情況(如果 y_score 是連續的,則很可能是這種情況),以提高效率。
- 回傳值:
- normalized_discounted_cumulative_gain介於 [0., 1.] 之間的浮點數
所有樣本的平均 NDCG 分數。
另請參閱
dcg_score
折現累計增益 (Discounted Cumulative Gain)(未正規化)。
參考文獻
Jarvelin, K., & Kekalainen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 20(4), 422-446.
Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May). A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th Annual Conference on Learning Theory (COLT 2013)
McSherry, F., & Najork, M. (2008, March). Computing information retrieval performance measures efficiently in the presence of tied scores. In European conference on information retrieval (pp. 414-421). Springer, Berlin, Heidelberg.
範例
>>> import numpy as np >>> from sklearn.metrics import ndcg_score >>> # we have ground-truth relevance of some answers to a query: >>> true_relevance = np.asarray([[10, 0, 0, 1, 5]]) >>> # we predict some scores (relevance) for the answers >>> scores = np.asarray([[.1, .2, .3, 4, 70]]) >>> ndcg_score(true_relevance, scores) np.float64(0.69...) >>> scores = np.asarray([[.05, 1.1, 1., .5, .0]]) >>> ndcg_score(true_relevance, scores) np.float64(0.49...) >>> # we can set k to truncate the sum; only top k answers contribute. >>> ndcg_score(true_relevance, scores, k=4) np.float64(0.35...) >>> # the normalization takes k into account so a perfect answer >>> # would still get 1.0 >>> ndcg_score(true_relevance, true_relevance, k=4) np.float64(1.0...) >>> # now we have some ties in our prediction >>> scores = np.asarray([[1, 0, 0, 0, 1]]) >>> # by default ties are averaged, so here we get the average (normalized) >>> # true relevance of our top predictions: (10 / 10 + 5 / 10) / 2 = .75 >>> ndcg_score(true_relevance, scores, k=1) np.float64(0.75...) >>> # we can choose to ignore ties for faster results, but only >>> # if we know there aren't ties in our scores, otherwise we get >>> # wrong results: >>> ndcg_score(true_relevance, ... scores, k=1, ignore_ties=True) np.float64(0.5...)