注意
前往結尾以下載完整的範例程式碼。或通過 JupyterLite 或 Binder 在您的瀏覽器中執行此範例
繪製在鳶尾花資料集上訓練的決策樹的決策面#
繪製在鳶尾花資料集的特徵對上訓練的決策樹的決策面。
請參閱 決策樹 以取得有關估計器的更多資訊。
對於每對鳶尾花特徵,決策樹會學習由從訓練樣本推斷出的簡單閾值規則組合而成的決策邊界。
我們還展示了基於所有特徵建立的模型的樹狀結構。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
首先載入 scikit-learn 隨附的鳶尾花資料集副本
顯示在所有特徵對上訓練的樹的決策函數。
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_iris
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.tree import DecisionTreeClassifier
# Parameters
n_classes = 3
plot_colors = "ryb"
plot_step = 0.02
for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]):
# We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target
# Train
clf = DecisionTreeClassifier().fit(X, y)
# Plot the decision boundary
ax = plt.subplot(2, 3, pairidx + 1)
plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
DecisionBoundaryDisplay.from_estimator(
clf,
X,
cmap=plt.cm.RdYlBu,
response_method="predict",
ax=ax,
xlabel=iris.feature_names[pair[0]],
ylabel=iris.feature_names[pair[1]],
)
# Plot the training points
for i, color in zip(range(n_classes), plot_colors):
idx = np.where(y == i)
plt.scatter(
X[idx, 0],
X[idx, 1],
c=color,
label=iris.target_names[i],
edgecolor="black",
s=15,
)
plt.suptitle("Decision surface of decision trees trained on pairs of features")
plt.legend(loc="lower right", borderpad=0, handletextpad=0)
_ = plt.axis("tight")

顯示在所有特徵一起訓練的單個決策樹的結構。
from sklearn.tree import plot_tree
plt.figure()
clf = DecisionTreeClassifier().fit(iris.data, iris.target)
plot_tree(clf, filled=True)
plt.title("Decision tree trained on all the iris features")
plt.show()

腳本總執行時間: (0 分鐘 0.848 秒)
相關範例