注意
跳到結尾下載完整範例程式碼,或通過JupyterLite或Binder在瀏覽器中執行此範例
標籤傳播學習複雜結構#
LabelPropagation學習複雜內部結構以展示「流形學習」的範例。外圈應標記為「紅色」,內圈應標記為「藍色」。由於兩個標籤組都位於它們各自不同的形狀內,我們可以觀察到標籤在圓圈周圍正確傳播。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
我們生成一個包含兩個同心圓的數據集。此外,每個數據集樣本都關聯一個標籤,該標籤是:0(屬於外圈)、1(屬於內圈)和 -1(未知)。在這裡,除兩個標籤外,所有標籤都被標記為未知。
import numpy as np
from sklearn.datasets import make_circles
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False)
outer, inner = 0, 1
labels = np.full(n_samples, -1.0)
labels[0] = outer
labels[-1] = inner
繪製原始數據
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 4))
plt.scatter(
X[labels == outer, 0],
X[labels == outer, 1],
color="navy",
marker="s",
lw=0,
label="outer labeled",
s=10,
)
plt.scatter(
X[labels == inner, 0],
X[labels == inner, 1],
color="c",
marker="s",
lw=0,
label="inner labeled",
s=10,
)
plt.scatter(
X[labels == -1, 0],
X[labels == -1, 1],
color="darkorange",
marker=".",
label="unlabeled",
)
plt.legend(scatterpoints=1, shadow=False, loc="center")
_ = plt.title("Raw data (2 classes=outer and inner)")

LabelSpreading
的目標是將標籤與最初未知的標籤的樣本關聯起來。
from sklearn.semi_supervised import LabelSpreading
label_spread = LabelSpreading(kernel="knn", alpha=0.8)
label_spread.fit(X, labels)
現在,我們可以檢查在標籤未知時,哪些標籤已與每個樣本關聯。
output_labels = label_spread.transduction_
output_label_array = np.asarray(output_labels)
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plt.figure(figsize=(4, 4))
plt.scatter(
X[outer_numbers, 0],
X[outer_numbers, 1],
color="navy",
marker="s",
lw=0,
s=10,
label="outer learned",
)
plt.scatter(
X[inner_numbers, 0],
X[inner_numbers, 1],
color="c",
marker="s",
lw=0,
s=10,
label="inner learned",
)
plt.legend(scatterpoints=1, shadow=False, loc="center")
plt.title("Labels learned with Label Spreading (KNN)")
plt.show()

腳本的總運行時間:(0 分 0.162 秒)
相關範例