在建立估算器之前填補缺失值#

缺失值可以使用基本 SimpleImputer 替換為平均值、中位數或最常見的值。

在此範例中,我們將研究不同的填補技術

  • 以常數值 0 填補

  • 以每個特徵的平均值填補,並結合缺失指標輔助變數

  • k 最近鄰填補

  • 迭代填補

我們將使用兩個資料集:糖尿病資料集,其中包含從糖尿病患者收集的 10 個特徵變數,旨在預測疾病進展;以及加州住房資料集,其目標是加州地區的房屋中位數價值。

由於這些資料集都沒有缺失值,我們將移除一些值以建立具有人工缺失資料的新版本。然後,比較 RandomForestRegressor 在完整原始資料集上的效能與在改變後的資料集上的效能,其中使用不同技術填補了人工缺失值。

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

下載資料並建立缺失值集#

首先,我們下載兩個資料集。糖尿病資料集隨 scikit-learn 一起提供。它有 442 個條目,每個條目有 10 個特徵。加州住房資料集較大,有 20640 個條目和 8 個特徵。它需要下載。為了加快計算速度,我們只會使用前 400 個條目,但請隨意使用整個資料集。

import numpy as np

from sklearn.datasets import fetch_california_housing, load_diabetes

rng = np.random.RandomState(42)

X_diabetes, y_diabetes = load_diabetes(return_X_y=True)
X_california, y_california = fetch_california_housing(return_X_y=True)
X_california = X_california[:300]
y_california = y_california[:300]
X_diabetes = X_diabetes[:300]
y_diabetes = y_diabetes[:300]


def add_missing_values(X_full, y_full):
    n_samples, n_features = X_full.shape

    # Add missing values in 75% of the lines
    missing_rate = 0.75
    n_missing_samples = int(n_samples * missing_rate)

    missing_samples = np.zeros(n_samples, dtype=bool)
    missing_samples[:n_missing_samples] = True

    rng.shuffle(missing_samples)
    missing_features = rng.randint(0, n_features, n_missing_samples)
    X_missing = X_full.copy()
    X_missing[missing_samples, missing_features] = np.nan
    y_missing = y_full.copy()

    return X_missing, y_missing


X_miss_california, y_miss_california = add_missing_values(X_california, y_california)

X_miss_diabetes, y_miss_diabetes = add_missing_values(X_diabetes, y_diabetes)

填補缺失資料並評分#

現在我們將編寫一個函數,該函數將對不同填補的資料上的結果進行評分。讓我們分別看看每個填補器

rng = np.random.RandomState(0)

from sklearn.ensemble import RandomForestRegressor

# To use the experimental IterativeImputer, we need to explicitly ask for it:
from sklearn.experimental import enable_iterative_imputer  # noqa
from sklearn.impute import IterativeImputer, KNNImputer, SimpleImputer
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import make_pipeline

N_SPLITS = 4
regressor = RandomForestRegressor(random_state=0)

缺失資訊#

除了填補缺失值之外,填補器還具有一個 add_indicator 參數,用於標記缺失的值,這些值可能攜帶一些資訊。

def get_scores_for_imputer(imputer, X_missing, y_missing):
    estimator = make_pipeline(imputer, regressor)
    impute_scores = cross_val_score(
        estimator, X_missing, y_missing, scoring="neg_mean_squared_error", cv=N_SPLITS
    )
    return impute_scores


x_labels = []

mses_california = np.zeros(5)
stds_california = np.zeros(5)
mses_diabetes = np.zeros(5)
stds_diabetes = np.zeros(5)

估計分數#

首先,我們要估計原始資料的分數

def get_full_score(X_full, y_full):
    full_scores = cross_val_score(
        regressor, X_full, y_full, scoring="neg_mean_squared_error", cv=N_SPLITS
    )
    return full_scores.mean(), full_scores.std()


mses_california[0], stds_california[0] = get_full_score(X_california, y_california)
mses_diabetes[0], stds_diabetes[0] = get_full_score(X_diabetes, y_diabetes)
x_labels.append("Full data")

將缺失值替換為 0#

現在,我們將估計缺失值被替換為 0 的資料上的分數

def get_impute_zero_score(X_missing, y_missing):
    imputer = SimpleImputer(
        missing_values=np.nan, add_indicator=True, strategy="constant", fill_value=0
    )
    zero_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing)
    return zero_impute_scores.mean(), zero_impute_scores.std()


mses_california[1], stds_california[1] = get_impute_zero_score(
    X_miss_california, y_miss_california
)
mses_diabetes[1], stds_diabetes[1] = get_impute_zero_score(
    X_miss_diabetes, y_miss_diabetes
)
x_labels.append("Zero imputation")

缺失值的 kNN 填補#

KNNImputer 使用所需數量的最近鄰的加權或未加權平均值來填補缺失值。

def get_impute_knn_score(X_missing, y_missing):
    imputer = KNNImputer(missing_values=np.nan, add_indicator=True)
    knn_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing)
    return knn_impute_scores.mean(), knn_impute_scores.std()


mses_california[2], stds_california[2] = get_impute_knn_score(
    X_miss_california, y_miss_california
)
mses_diabetes[2], stds_diabetes[2] = get_impute_knn_score(
    X_miss_diabetes, y_miss_diabetes
)
x_labels.append("KNN Imputation")

以平均值填補缺失值#

def get_impute_mean(X_missing, y_missing):
    imputer = SimpleImputer(missing_values=np.nan, strategy="mean", add_indicator=True)
    mean_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing)
    return mean_impute_scores.mean(), mean_impute_scores.std()


mses_california[3], stds_california[3] = get_impute_mean(
    X_miss_california, y_miss_california
)
mses_diabetes[3], stds_diabetes[3] = get_impute_mean(X_miss_diabetes, y_miss_diabetes)
x_labels.append("Mean Imputation")

缺失值的迭代填補#

另一個選項是 IterativeImputer。這使用循環線性迴歸,依次將每個具有缺失值的特徵建模為其他特徵的函數。實施的版本假定高斯(輸出)變數。如果您的特徵顯然是非常態的,請考慮轉換它們以使其看起來更常態,以潛在提高效能。

def get_impute_iterative(X_missing, y_missing):
    imputer = IterativeImputer(
        missing_values=np.nan,
        add_indicator=True,
        random_state=0,
        n_nearest_features=3,
        max_iter=1,
        sample_posterior=True,
    )
    iterative_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing)
    return iterative_impute_scores.mean(), iterative_impute_scores.std()


mses_california[4], stds_california[4] = get_impute_iterative(
    X_miss_california, y_miss_california
)
mses_diabetes[4], stds_diabetes[4] = get_impute_iterative(
    X_miss_diabetes, y_miss_diabetes
)
x_labels.append("Iterative Imputation")

mses_diabetes = mses_diabetes * -1
mses_california = mses_california * -1

繪製結果#

最後,我們將視覺化分數

import matplotlib.pyplot as plt

n_bars = len(mses_diabetes)
xval = np.arange(n_bars)

colors = ["r", "g", "b", "orange", "black"]

# plot diabetes results
plt.figure(figsize=(12, 6))
ax1 = plt.subplot(121)
for j in xval:
    ax1.barh(
        j,
        mses_diabetes[j],
        xerr=stds_diabetes[j],
        color=colors[j],
        alpha=0.6,
        align="center",
    )

ax1.set_title("Imputation Techniques with Diabetes Data")
ax1.set_xlim(left=np.min(mses_diabetes) * 0.9, right=np.max(mses_diabetes) * 1.1)
ax1.set_yticks(xval)
ax1.set_xlabel("MSE")
ax1.invert_yaxis()
ax1.set_yticklabels(x_labels)

# plot california dataset results
ax2 = plt.subplot(122)
for j in xval:
    ax2.barh(
        j,
        mses_california[j],
        xerr=stds_california[j],
        color=colors[j],
        alpha=0.6,
        align="center",
    )

ax2.set_title("Imputation Techniques with California Data")
ax2.set_yticks(xval)
ax2.set_xlabel("MSE")
ax2.invert_yaxis()
ax2.set_yticklabels([""] * n_bars)

plt.show()
Imputation Techniques with Diabetes Data, Imputation Techniques with California Data

您也可以嘗試不同的技術。例如,對於具有高幅度變數(也稱為「長尾」)的資料,中位數是更穩健的估算器,這些變數可能會主導結果。

腳本的總執行時間:(0 分鐘 11.125 秒)

相關範例

使用 IterativeImputer 的變體填補缺失值

使用 IterativeImputer 的變體填補缺失值

scikit-learn 0.22 的發行重點

scikit-learn 0.22 的發行重點

scikit-learn 1.5 的發行重點

scikit-learn 1.5 的發行重點

變異貝氏高斯混合的濃度先驗類型分析

變異貝氏高斯混合的濃度先驗類型分析

由 Sphinx-Gallery 產生的圖庫